热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

基址获取与驱动开发:内核中提取ntoskrnl模块的基地址方法解析

篇首语:本文由编程笔记#小编为大家整理,主要介绍了驱动开发:内核取ntoskrnl模块基地址相关的知识,希望对你有一定的参考价值。 模块是程序加载时被动态装载的,模块在

篇首语:本文由编程笔记#小编为大家整理,主要介绍了驱动开发:内核取ntoskrnl模块基地址相关的知识,希望对你有一定的参考价值。



模块是程序加载时被动态装载的,模块在装载后其存在于内存中同样存在一个内存基址,当我们需要操作这个模块时,通常第一步就是要得到该模块的内存基址,模块分为用户模块和内核模块,这里的用户模块指的是应用层进程运行后加载的模块,内核模块指的是内核中特定模块地址,本篇文章将实现一个获取驱动ntoskrnl.exe的基地址以及长度,此功能是驱动开发中尤其是安全软件开发中必不可少的一个功能。

关于该程序的解释,官方的解析是这样的ntoskrnl.exeWindows操作系统的一个重要内核程序,里面存储了大量的二进制内核代码,用于调度系统时使用,也是操作系统启动后第一个被加载的程序,通常该进程在任务管理器中显示为System

使用ARK工具也可看出其代表的是第一个驱动模块。

那么如何使用代码得到如上图中所展示的基地址以及大小呢,实现此功能我们需要调用ZwQuerySystemInformation这个API函数,这与上一篇文章《驱动开发:判断自身是否加载成功》所使用的NtQuerySystemInformation只是开头部分不同,但其本质上是不同的,如下是一些参考资料;



  • 从内核模式调用NtZw系列API,其最终都会连接到nooskrnl.lib导出库:



    • Nt系列API将直接调用对应的函数代码,而Zw系列API则通过调用KiSystemService最终跳转到对应的函数代码。

    • 重要的是两种不同的调用对内核中previous mode的改变,如果是从用户模式调用Native APIprevious mode是用户态,如果从内核模式调用Native APIprevious mode是内核态。

    • 如果previous为用户态时Native API将对传递的参数进行严格的检查,而为内核态时则不会检查。



调用Nt API时不会改变previous mode的状态,调用Zw API时会将previous mode改为内核态,因此在进行Kernel Mode Driver开发时可以使用Zw系列API可以避免额外的参数列表检查,提高效率。Zw*会设置KernelMode已避免检查,Nt*不会自动设置,如果是KernelMode当然没问题,如果就UserMode就挂了。

回到代码上来,下方代码就是获取ntoskrnl.exe基地址以及长度的具体实现,核心代码就是调用ZwQuerySystemInformation得到SystemModuleInformation,里面的对比部分是在比较当前获取的地址是否超出了ntoskrnl的最大和最小范围。

#include
static PVOID g_KernelBase = 0;
static ULONG g_KernelSize = 0;
#pragma pack(4)
typedef struct _PEB32
UCHAR InheritedAddressSpace;
UCHAR ReadImageFileExecOptions;
UCHAR BeingDebugged;
UCHAR BitField;
ULONG Mutant;
ULONG ImageBaseAddress;
ULONG Ldr;
ULONG ProcessParameters;
ULONG SubSystemData;
ULONG ProcessHeap;
ULONG FastPebLock;
ULONG AtlThunkSListPtr;
ULONG IFEOKey;
ULONG CrossProcessFlags;
ULONG UserSharedInfoPtr;
ULONG SystemReserved;
ULONG AtlThunkSListPtr32;
ULONG ApiSetMap;
PEB32, *PPEB32;
typedef struct _PEB_LDR_DATA32
ULONG Length;
UCHAR Initialized;
ULONG SsHandle;
LIST_ENTRY32 InLoadOrderModuleList;
LIST_ENTRY32 InMemoryOrderModuleList;
LIST_ENTRY32 InInitializationOrderModuleList;
PEB_LDR_DATA32, *PPEB_LDR_DATA32;
typedef struct _LDR_DATA_TABLE_ENTRY32
LIST_ENTRY32 InLoadOrderLinks;
LIST_ENTRY32 InMemoryOrderLinks;
LIST_ENTRY32 InInitializationOrderLinks;
ULONG DllBase;
ULONG EntryPoint;
ULONG SizeOfImage;
UNICODE_STRING32 FullDllName;
UNICODE_STRING32 BaseDllName;
ULONG Flags;
USHORT LoadCount;
USHORT TlsIndex;
LIST_ENTRY32 HashLinks;
ULONG TimeDateStamp;
LDR_DATA_TABLE_ENTRY32, *PLDR_DATA_TABLE_ENTRY32;
#pragma pack()
typedef struct _RTL_PROCESS_MODULE_INFORMATION
HANDLE Section;
PVOID MappedBase;
PVOID ImageBase;
ULONG ImageSize;
ULONG Flags;
USHORT LoadOrderIndex;
USHORT InitOrderIndex;
USHORT LoadCount;
USHORT OffsetToFileName;
UCHAR FullPathName[256];
RTL_PROCESS_MODULE_INFORMATION, *PRTL_PROCESS_MODULE_INFORMATION;
typedef struct _RTL_PROCESS_MODULES
ULONG NumberOfModules;
RTL_PROCESS_MODULE_INFORMATION Modules[1];
RTL_PROCESS_MODULES, *PRTL_PROCESS_MODULES;
typedef enum _SYSTEM_INFORMATION_CLASS
SystemModuleInformation = 0xb,
SYSTEM_INFORMATION_CLASS;
// 取出KernelBase基地址
// By: lyshark.com
PVOID UtilKernelBase(OUT PULONG pSize)
NTSTATUS status = STATUS_SUCCESS;
ULONG bytes = 0;
PRTL_PROCESS_MODULES pMods = 0;
PVOID checkPtr = 0;
UNICODE_STRING routineName;
if (g_KernelBase != 0)

if (pSize)
*pSize = g_KernelSize;
return g_KernelBase;

RtlInitUnicodeString(&routineName, L"NtOpenFile");
checkPtr = MmGetSystemRoutineAddress(&routineName);
if (checkPtr == 0)
return 0;
__try

status = ZwQuerySystemInformation(SystemModuleInformation, 0, bytes, &bytes);
if (bytes == 0)

DbgPrint("Invalid SystemModuleInformation size\\n");
return 0;

pMods = (PRTL_PROCESS_MODULES)ExAllocatePoolWithTag(NonPagedPoolNx, bytes, "lyshark");
RtlZeroMemory(pMods, bytes);
status = ZwQuerySystemInformation(SystemModuleInformation, pMods, bytes, &bytes);
if (NT_SUCCESS(status))

PRTL_PROCESS_MODULE_INFORMATION pMod = pMods->Modules;
for (ULONG i = 0; i NumberOfModules; i++)

if (checkPtr >= pMod[i].ImageBase &&
checkPtr <(PVOID)((PUCHAR)pMod[i].ImageBase + pMod[i].ImageSize))

g_KernelBase = pMod[i].ImageBase;
g_KernelSize = pMod[i].ImageSize;
if (pSize)
*pSize = g_KernelSize;
break;




__except (EXCEPTION_EXECUTE_HANDLER)

return 0;

if (pMods)
ExFreePoolWithTag(pMods, "lyshark");
return g_KernelBase;
VOID UnDriver(PDRIVER_OBJECT driver)
DbgPrint(("Uninstall Driver Is OK \\n"));
NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
DbgPrint(("hello lyshark \\n"));
PULONG ulOng= 0;
UtilKernelBase(ulong);
DbgPrint("ntoskrnl.exe 模块基址: 0x%p \\n", g_KernelBase);
DbgPrint("模块大小: 0x%p \\n", g_KernelSize);
Driver->DriverUnload = UnDriver;
return STATUS_SUCCESS;

我们编译并运行上方代码,效果如下:

参考文献:

https://blog.csdn.net/u012410612/article/details/17096597


推荐阅读
  • 在MFC框架中,存在多个全局函数,用于在不同对象间获取信息或创建新对象。其中,`afxGetApp`函数尤为关键,它能够帮助开发者轻松获取当前应用程序的实例指针。本文将详细解析`afxGetApp`函数的内部机制及其在MFC应用程序中的具体应用场景,探讨其在提升代码可维护性和灵活性方面的优势。此外,还将介绍其他常用全局函数如`AfxWinInit()`和`AfxBeginThread()`的功能和使用方法,为开发者提供全面的参考。 ... [详细]
  • 深入解析 Android TextView 中 getImeActionLabel() 方法的使用与代码示例 ... [详细]
  • Java中处理NullPointerException:getStackTrace()方法详解与实例代码 ... [详细]
  • 本文深入探讨了CGLIB BeanCopier在Bean对象复制中的应用及其优化技巧。相较于Spring的BeanUtils和Apache的BeanUtils,CGLIB BeanCopier在性能上具有显著优势。通过详细分析其内部机制和使用场景,本文提供了多种优化方法,帮助开发者在实际项目中更高效地利用这一工具。此外,文章还讨论了CGLIB BeanCopier在复杂对象结构和大规模数据处理中的表现,为读者提供了实用的参考和建议。 ... [详细]
  • Java SE 文件操作类详解与应用
    ### Java SE 文件操作类详解与应用#### 1. File 类##### 1.1 File 类概述File 类是 Java SE 中用于表示文件和目录路径名的对象。它提供了丰富的方法来操作文件和目录,包括创建、删除、重命名文件,以及获取文件属性和信息。通过 File 类,开发者可以轻松地进行文件系统操作,如检查文件是否存在、读取文件内容、列出目录下的文件等。此外,File 类还支持跨平台操作,确保在不同操作系统中的一致性。 ... [详细]
  • 如何使用和示例代码解析 org.semanticweb.owlapi.model.OWLSubPropertyChainOfAxiom.getPropertyChain() 方法 ... [详细]
  • 利用Java开发功能完备的电话簿应用程序,支持添加、查询与删除操作
    本研究基于Java语言开发了一款功能全面的电话簿应用程序,实现了与数据库的高效连接。该应用不仅支持添加、查询和删除联系人信息,还具备输出最大和最小ID号的功能,并能够对用户输入的ID号进行有效性验证,确保数据的准确性和完整性。详细实现方法可参阅相关文档。 ... [详细]
  • C#中实现高效UDP数据传输技术
    C#中实现高效UDP数据传输技术 ... [详细]
  • 本文深入探讨了 MXOTDLL.dll 在 C# 环境中的应用与优化策略。针对近期公司从某生物技术供应商采购的指纹识别设备,该设备提供的 DLL 文件是用 C 语言编写的。为了更好地集成到现有的 C# 系统中,我们对原生的 C 语言 DLL 进行了封装,并利用 C# 的互操作性功能实现了高效调用。此外,文章还详细分析了在实际应用中可能遇到的性能瓶颈,并提出了一系列优化措施,以确保系统的稳定性和高效运行。 ... [详细]
  • 本题库精选了Java核心知识点的练习题,旨在帮助学习者巩固和检验对Java理论基础的掌握。其中,选择题部分涵盖了访问控制权限等关键概念,例如,Java语言中仅允许子类或同一包内的类访问的访问权限为protected。此外,题库还包括其他重要知识点,如异常处理、多线程、集合框架等,全面覆盖Java编程的核心内容。 ... [详细]
  • 本文详细探讨了Zebra路由软件中的线程机制及其实际应用。通过对Zebra线程模型的深入分析,揭示了其在高效处理网络路由任务中的关键作用。文章还介绍了线程同步与通信机制,以及如何通过优化线程管理提升系统性能。此外,结合具体应用场景,展示了Zebra线程机制在复杂网络环境下的优势和灵活性。 ... [详细]
  • 针对NOJ1102黑白图像问题,本文采用深度优先搜索算法进行详细分析与实现。该问题要求在给定的时间限制(普通Java为1000-3000毫秒)和内存限制(65536KByte)内,处理一个n×n的黑白图像。通过对图像的逐像素遍历,利用深度优先搜索算法有效地识别并标记相连的黑色区域,从而实现图像的高效处理。实验结果显示,该方法在多种测试用例中均能稳定达到预期效果,具有较高的准确性和效率。 ... [详细]
  • 本文探讨了利用Java实现WebSocket实时消息推送技术的方法。与传统的轮询、长连接或短连接等方案相比,WebSocket提供了一种更为高效和低延迟的双向通信机制。通过建立持久连接,服务器能够主动向客户端推送数据,从而实现真正的实时消息传递。此外,本文还介绍了WebSocket在实际应用中的优势和应用场景,并提供了详细的实现步骤和技术细节。 ... [详细]
  • 深入解析 Vue 中的 Axios 请求库
    本文深入探讨了 Vue 中的 Axios 请求库,详细解析了其核心功能与使用方法。Axios 是一个基于 Promise 的 HTTP 客户端,支持浏览器和 Node.js 环境。文章首先介绍了 Axios 的基本概念,随后通过具体示例展示了如何在 Vue 项目中集成和使用 Axios 进行数据请求。无论你是初学者还是有经验的开发者,本文都能为你解决 Vue.js 相关问题提供有价值的参考。 ... [详细]
  • 在 Windows 10 环境中,通过配置 Visual Studio Code (VSCode) 实现基于 Windows Subsystem for Linux (WSL) 的 C++ 开发,并启用智能代码提示功能。具体步骤包括安装 VSCode 及其相关插件,如 CCIntelliSense、TabNine 和 BracketPairColorizer,确保在 WSL 中顺利进行开发工作。此外,还详细介绍了如何在 Windows 10 中启用和配置 WSL,以实现无缝的跨平台开发体验。 ... [详细]
author-avatar
mobiledu2502892513
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有